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Recognizing Successive Dolphin Echoes with an Integrator
Gateway Network

P. W. B Moore!, H. L. Roitblat’ and P. E. Nachtigali'?
'"The Naval Command, Control and Ocean Surveillance Center
(RDT&E Division), San Diego CA 92152-5000
*Hawaii Institute of Marine Biology, University of Hawaii, Kailua, HI 96734
*Department of Psychology, University of Hawaii, Honolulu, HI 96822

Abstract

A novel network architecture was developed 1o classify
multiple successive echoes from 1argets ensonified by a
dolphin echolocating in a naturalistic environment. The
inputs to the network were spectral vecrors of the echo
plus one unit representing the start of each scan. This
network combined information from successive echoes
Jrom the same target and reset between scans of
different targets. The network was trained on a small
subset (4%) of the total set of available echoes (1,335).
Depending on the measure used 10 assess it, the network
correctly classified between 90% and 93% of all echo
trains. In contrast, a standard backpropagation nerwork
with the same number of units and varable connections
performed with only about 63% accuracy in classifying
echo trains. The integration model seems to provide a
belter account of the dolphin's performance than a
decision model that does not combine information from
multiple echoes.

Introduction

Bottlenose dolphins (rursiops truncatus) possess
a unique biological sonar which is highly adapied to
their aquatic environment (Moore et al, 1990). Using
this sonar the dolphin can readily identify many
characteristics of submerged objects by sending out
broad-band high frequency clicks and processing the
returning echoes (see Nachtigall, 1980, for a review).

The specific processes by which the dolphin

extracts acoustic information about the targets is
unknown and particularly inleresting questions concern
how the anima)l performs feature extraction from a set of
returning echoes (Nachtigall & Moore, 1988)

Behavioral methods

Our subject s a hughly expenenced male
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bottlenose dolphin, housed in a floating enclosure in
Kaneohe Bay at the Hawaii Laboratory of the The
NavalCommand, Control and Ocean Surveillance Center
(RDT&E Division). During the echolocation tests the
animals' eyes are covered with soft removable eyecups
that occlude its vision. Echolocation data were recorded
while the animal was performing a delayed matching-to-
sample (DMTS) object recognition task.

In this task, the dolphin must select from a set
of three alternatives the one target thai is the same as
(matches) a previously presented sample target. The
identity and location of the targets vary randomly from
trial to tnal, so performance on this task requires the
animal to recognize the sample, remember its identity,
and to recognize the matching target To perform this
task the dolphin stationed under water in the center of an
observing aperture, located directly in front of the
sample target array. Three sets of comparison targets
were suspended in front of the animal from a bar located
4.3 m from the underwater aperture. Echolocation
clicks were detected by B&K 8103 hydrophones located
2 m from the observing aperture between the aperture
and the targets. Echoes from the targets were recorded
using a custom-built hydrophone with a flat response up
to 200 kHz. Recordings were made using a RACAL
store-4 tape recorder, with a 300 kHz dynamic range,
from which clicks and echoes were digitized at } MHz.
Figure 1 is a schematic of the testing configuration.

The present study used three targets. (a) a PVC
plastic tube open at both ends (15 cm long, 7.5 cm
diameter, 30 mm wall thickness), (b) a water-filled
stainless steel sphere (5 cm diameter), and (c) a sohd
aluminum cone (10 cm diameter base, 10 cm height),
cach presented approximately 100 ¢cm below the waler's
surface. Four examples of each target were used, one
as sample, and the other three as alternative comparison
targets. Each tnial began with the dolphin stationed in
the observing aperture with the acousuc screen closed
One of the samplc targets was then lowered o the
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Figure ]. A schematic of the test-pen. The animal is shown stationed
Joacing the acoustic screen, measuring hydrophones and the comparison
and the sample 1avget arays. T he hydrophone used to collect the
echoes from the iargets was placed on the night side of the animal.

allowed to echolocate ad hb. The acoustic screen was
then raised, the sample was removed from the water and
three alternative targets were then presented. The screen
was then again lowered and the dolphin was allowed to
echolocate on the comparison targets. The animal
indicated his choice by contacting a small ball on the
end of a response wand at the water surface, and directly
in front of each comparison target array. The dolphin’s
choice accuracy averaged nearly 95% correct.

Echo analysis using a counterpropagation network

A selected sample of echoes collected from this
experiment was submitted to a counterpropagation
network (Hecht-Nielsen, 1987, 1988, see also Grossberg,
1976) trained to classify a subset of these echoes into
categories corresponding to each of the stimuli (see
Rozitblat, Moore, Nachtigall, Penner, & Au, 1989, for a
description of this work). This network learned to
classify the spectral information from the echoes with
considerable accuracy above 95% correct (including
novel exemplars). Although the network could identify
the target with only a single echo, the dolphin
concurrently performing the same task emitted many
more clicks in identifying the same targets. We also
noticed that the dolphin was more variable in terms of
the number of clicks and the number of scans used to
identify the correct match than was predicted by a
sequentiaj sampling model of his performance (Rostblat,
et al , 1990)

The sequential sampling model assumed that
the echoes were drawn from a stationary distribution,
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which may have been an inappropnate assumption in
light of the variability in the dolphin’s click production.
Because of the sampling procedure (echoes were selected
largely on the basis of their intensity), the echoes
submitted to the neural network may not have been
typical of the population of echoes the dolphin actually
used. This possibility could have led to an overestimate
of the ability of the models to recognize targets on the
basis of dolphin echolocation returns.

In response to these considerations we extended
our analysis to include every echo available to the
dolphin. In contrast to our previous studies conceming
the classification of echoes, tn which echoes were
selected for inclusion if they were sufficiently intense, in
the present study we captured the echo resulting from
every click the animal emitted in the sampled trials.

The integrator gateway network

A new network architecture was developed in
order to model the dolphin's extraction of information
from trains of echoes. The model incorporates the
assumption that the dolphin averages or sums spectral
information from successive echoes and continues to
emit clicks and collect returning echoes until it can
classify the target producing those echoes with sufficient
confidence. The inputs 1o this network were patterns of
spectral intensity (i.e., amplitude in each frequency
band). The outputs of the network were sumulus
classes. One output comresponded to each stimulus class,
sphere, cone, and tube. The resulling activations of each
of these output classes were taken to be an estimate of
the likelihood that the echo resulted from the particular
stimulus type (Qian & Sejnowski, 1988). Figure 2
shows the overall structure of the Integrator Gateway
Network.

Inputs to the network consisted of 30 bins of
relative amplitude spéctral information, 3.91 kHz per
bin, ranging from 31.25 kHz to 146.5 kHz. Each echo
was also marked as to whether the echo was (1.00) or
was not (0.00) at the start of an echo train. The first
input to the network contained the start-of-train marker,
the remaining elements contained the amplitude of a
specified frequency range. The frequency inputs were
then passed to a scaler unit and to the integrator layer.

The integrator layer (grey circles) also contained 30
units, connected to the frequency units in the input layer
in a corresponding one-10-one pattern. The connection
weights from the inputs to the integrator layer were fixed
at 1.00. The connections to the scaler unit were fixed at
1/n, where n is the number of frequency inputs (i.e., 30).
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Figure 2. A schemunc of the Integrator Gateway Network. The
bottom part of the figure shows one echo in the form of relative
amplitude and a siat-of-scan marker.  Elipses indicate that the full
nebwork contains additional units of the sume rype.

The output of the scaler unit, which was simply
the sum of all of its inputs, was passed to each of the
units 1n the integrator layer via a fixed weight of -1.00.
The effect of this scaler unit was 10 subtract the average
activity of the input layer (neglecting the start-of-train
marker) from the inputs to the integrator layer.

The elements in the integrator layer computed a
cumulative (running) sum of the inputs they received.

One echo was presented per time step. The activation of

each umit in the integrator layer was the sum of the
activation it had during the previous time step, plus the
activation i1t received from the scaler unit, plus the
activation it received from its respective input, plus the

activation of its corresponding gateway unit. The role of

the integrator layer was to accumulate and integrate
information from successive echoes The outputs of the
integrator layer were passed back via fixed connections
with 1.00 weights to corresponding units in the gateway
layer (open triangles) Each unit in the gateway layer
acted as a reset for the corresponding unit 1n the
integrator layer.

The connection between each gateway unit and
s corresponding intcgrator unit was fixed at
-1.00. The output of the gateway unit was the product
of the output of its corresponding integrator unit and the
start-of-scan marker The activation from the gateway
umit received by the micgrator umt consisted of the
product of the conncction weipht (-1 00), the acuvation
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of the start-of-scan marker, and the activation during the
previous time step of the comresponding unit in the
integrator layer. Because the marker had 1.00 activity at
the start of a click train and 0.00 activity otherwise, this
marker allowed the gateway unit to function as a reset
signal, causing the units in the integrator layer to be
reset to 0.0 at the stant of every scan.

During each time step, the output of the integrator
layer also led via variable-weight connections to each of
the elements in the feature layer. The outputs of the
elements in the Feature Layer then led via variable-
weight connections to the output or classification layer.
The clements in these two layers contained sigmoid
transfer functions and were trained using a standard
cumulative backpropagation algorithm (McClelland &
Rumelhart, 1988; Rumelhart, Hinton, & Williams, 1986)
with the epoch size set to the number of training
samples (60).

The network was trained with six sets of tcn
successive echoes selected from the ends of haphazardly
chosen echo trains. Two sets of echoes were chosen for
each stimulus in the set. The network was trained with
declining leaming-rate parameters. The network
converged to a cniterion RMS output error of 0.05 after
12,300 iterations
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Figure 3. Resulis of generalization testing of the network 1n the form
of the confidence of the network in assigning the echo train to the
proper category.

Integrator gateway results and discussion

Figure 3 shows the results of generalization testing
of the network The complete, onginal set of 1,335
sequential echoes was presented to the network and the
network was allowed to classify each echo train. Figure
3 shows the confidence of the network 1in assigming the
echo train to the proper category as a function of the




numbcer of echoes received. "Confidence” was defined
as the ratio of the activation level of the correct
classification versus the total output of the three
classification units. These confidence ratios correspond
lo intermediate likelihood ratios (Qian & Sejnowski,
1988). Overall, the animal's performance is better than
that of our network. Roitblat, et al. (1990b) rcported
that the dolphin was 94.5% correct at selecting the
correct match. This level of performance required the
animal to identify the sample correctly and to identify
comparison stimuli correctly. The probability of both
occurring was observed to be 0.945. Therefore, on the
assumption that the two identifications were independent
of one another, the probability of identifying both is
simply the- product of the probabilities of identifying
each target individually. Therefore, the probability of
each identification can be estimated at p = V0.945 =
0.972 (assuming that each occurred with equal
probability). By no measure was our network 97.2%
accurate at identifying the stimuli, but when 1t did
identify the simuli 1t tended to do so with fewer echoes
than were used by the dolphin.

According to our model, on a substantial number
of trials the dolphin continued to emit echolocation
signals beyond the rational stopping criterion prescribed
by sequential sampling theory, and failed to emit
sufficient clicks on one scan (the first scan of tube
targets). Therc could be several reasons why the
doiphin continued to sample after the network had
reached 1its confidence criterion. Among these are the
possibility that the dolphin considers a broader range of
targets 1n making its classification. This dolphin was
highly experienced having served in various forms of the
experiment with many different targets for more than §
vears. Although this experiment was designed to present
only the same three targets at all times, the dolphin mav
have persisted in classifying the echoes relative to a
much larger set of targets. More echoes may be
necessary to disciminate among this broader range of
targels -

Another possibility 1s that the dolphin uses other
information besides that used by the network. For
cxample, although the network was trained to classify
targets on the basis of relative-amplitude echo spectra,
the dolphin may use absolute target “strength” or a
vaniety of time-domain features (Au, 1988) as
discriminative cues.

A third possibility 1s that the dolphin may not be
able to represent the echo spectra with the same fidelny
that was available to the network. The dolphin may
occasionally "forget” or fail to attend to some of the
ccho information We also ime-windowed the echoces
and therehy focused the network’s "attention”

specifically on these intervals The dolphin may non be

capable of such rigid timing and may need 1o emit some
clicks simply to determine target distance in order to
extract other information.

The final possibility that has occurred to us is that
the doiphin may not have been as task-focused as the
neural network. The echoes were collected in a natural
environment containing, for example, many moving fish,
other dolphins, etc. It is possible that at least some of
the clicks may have been directed at targets other than
those presented explicitly by the experimenters, or that
the dolphin continued to click at the target while actually
attending elsewhere.

A simple backpropagation network

The architecture of the integrator gateway network
is substantially more complicated than that of some more
standard networks architectures. By way of comparnison,
therefore, we trained a backpropagation network on the
same data in order to determine whether this additional
structure contributed to the perfurmance of the network
The backpropagation network contained exactly the same
number of inputs, hidden units, outputs, and adjustable
connections as the integrator network. The only
difference between the networks was the presence of the
mntegration apparatus in the integrator network and its
absence in the backpropagation network. The
backpropagation network was trained to the same 0.05
RMS error criterion using the same training parametcrs
and then tested on the full set of echoes.

Backpropagation results

Figure 4 shows the confidence of the network 1n
assigning the echo train to the proper category as a
function of the number of echoes received. Compared to
the categorization performance of the integrator network,
the backpropagation network was much more varniable
Whereas the integrator network was trained 1o recognize
integrated combinations of echoes, the backpropagation
network was trained to recognize individual, independent
examples of echoes

As Figure 4 illustrates, the individual echoes were
highly variable, and frequently assigned to an erroncous

category

These data suggest that the integrator network
added significantly to the ability to classifv sequentially
produced echoes. In other words, by implementing a
signal "averaging™ mechanmism in the neural network we
allowed the system to take advantage of the redundancy
inherent in the use of multiple echoes from the same
source and n the stochastic properties of the noise i
which those echoes ate embedded
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In contrast, the backpropagation network was
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Figure 4. Confidence of the backpropagation network in assigning the
echo to train to the proper catagory as a function of the number of

echues recived. N is the number of trains classified from each target.

required to process not only the characteristics of the
echoes themselves, but also the characteristics of the
noise. This results in many spurious classifications.
Presumably, if a larger training set had been employed,
the backpropagation network would have learned to
"abstract" the salient properties of the echoes, but within
the constraints of a relatively small training set (60 of
1,335 or just 4% of the total number of echoes), the
integrator network does a much better job of separating
the signal from the noise.

The gateway integrator network adds a level of
complexity to the standard backpropagation network
architecture that contributes substantially to its
performance. Its design is inspired by properties of the
dolphin's performance and it represents one step along a
development path that seeks to include more of the
mechanisms that we can identify from the neurobiology
of echolocation (e.g.,Suga, 1990) and from the
performance of dolphins in their aquatic environment.
Although the results of the present study do not prove
that dolphins perform similar integration, this integration
model secems to provide a better account than a decision
model that does not integrate.
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